

PiXL Independence: Biology – Student Booklet KS5

Topic - Cells

Contents:

- I. Level 1- Multiple Choice Quiz 20 credits
- II. Level 2 5 questions, 5 sentences, 5 words 10 credits each
- III. Level 3 Biology in The News 100 credits
- IV. Level 4 Scientific Podcast 100 credits
- V. Level 5 Video summaries 50 credits each

PiXL Independence – Level 1 Multiple Choice Questions A Level Biology – Cells

INSTRUCTIONS

Score: /20

- Read the question carefully.
- Circle the correct letter.
- Answer all questions

Part 1 – Cell structure & Microscopy

- 1. Which organelle is responsible for producing fats?
 - a Rough ER
 - b Smooth ER
 - c Golgi apparatus
 - d Nucleolus

2. Where are ribosomes manufactured?

- a Nucleolus
- b Centrioles
- c Vacuole
- d Rough ER

3. Which of the rows shows the correct pairs of units?

а	1 mm = 0.1cm	1 nm = 0.001µm	1cm =	1µm = 1000mm
			1,000,000nm	

b	1cm = 10,000,000nm	1 nm = 0.000001mm	1 mm = 1000µm	1μm = 0.0001cm
с	1μm = 0.01mm	1 nm = 0.01µm	1cm = 10,000,000nm	1 mm = 0.1cm

d	1 mm = 0.1cm	1 nm = 1000µm	1cm =	1μm = 1000nm
			1,000,000nm	

4. Which table shows the correct comparison of prokaryotes and Eukaryotes?

а		Eukaryotes	Prokaryotes
	Nucleus	×	\checkmark
	Naked DNA	✓	×
	Ribosomes	✓	\checkmark
	Rough ER	×	 ✓
	Cell membrane	✓	\checkmark
b		Eukaryotes	Prokaryotes
	Nucleus	\checkmark	×
	Naked DNA	✓	\checkmark
	Ribosomes	✓	×
	Rough ER	✓	× √
	Cell membrane	✓	\checkmark
с		Eukaryotes	Prokaryotes
	Nucleus	\checkmark	×
	Naked DNA	×	\checkmark
	Ribosomes	\checkmark	 ✓
	Rough ER	\checkmark	×
	Cell membrane	\checkmark	\checkmark
d	Cell membrane	✓ Eukaryotes	✓ Prokaryotes
d	Cell membrane Nucleus	✓ Eukaryotes ✓	✓ Prokaryotes ×
d	Cell membrane Nucleus Naked DNA	✓ Eukaryotes ✓ ✓	✓ Prokaryotes × ✓
d	Cell membrane Nucleus Naked DNA Ribosomes	✓ Eukaryotes ✓ ✓ ✓	 ✓ Prokaryotes × ✓ ✓ ✓
d	Cell membrane Nucleus Naked DNA Ribosomes Rough ER	✓ Eukaryotes ✓ ✓ ✓ ✓ ✓	✓ Prokaryotes × ✓ ✓ ✓ ✓ ×

- 5. Which of the following organelles contain hydrogen peroxide?
 - a Centrioles
 - b Lysosomes
 - c Ribosomes
 - d Mitochondria
- 6. Which of the following contain DNA? (may be more than one correct answer)
 - a Mitochondria
 - b Chloroplast
 - c Ribosome
 - d Prokaryote
- 7. Which of the following proteins combine with DNA to form chromatin?
 - a Collagen
 - b Chaperones
 - c Histones
 - d Glycoproteins
- 8. The cytoskeleton has many functions within the cell, from providing support, facilitating movement of molecules around the cell or providing movement in structures like undulipodia.

Which of the following types of skeleton facilitates movement of molecules within the cell?

- a Microfilaments
- b Microtubules
- c Intermediate fibre
- d Macrotubules

- 9. What is the correct function of the Golgi apparatus?
 - a Synthesis of lipids
 - b Modifies and packages proteins
 - c Manufactures ribosomes
 - d Site of protein synthesis
- 10. A Eukaryotic cell has 7.2×10^7 base pairs of DNA per chromosome. Each base pair is 0.36×10^{-9} m. The diploid number of a dog cell is 78. Calculate the length of DNA in the cell.
 - a 2.02m
 - b 0.023m
 - c 2.02cm
 - d 1.56 x 10¹⁹

Part 2 – Cell membranes and cell division

- 11. What is the function of cholesterol in the cell membrane?
 - a To make the membrane less fluid
 - b To make the membrane more fluid
 - c To make the membrane more fluid at high temperatures and less fluid at low temperatures
 - d To make the membrane less fluid at high temperatures and more fluid at low temperatures
- 12. Transmembrane proteins have different regions. Which statement is correct for transmembrane proteins?
 - a Within the phospholipid bilayer, the amino acids exposed to the phospholipids have hydrophilic R groups and the regions within the protein, but not exposed, have hydrophobic R groups.
 - b The regions on the outside of the cell contain amino acids with hydrophobic R groups and the regions on the inside contain amino acids with hydrophilic R groups.
 - Within the phospholipid bilayer they contain amino acids with hydrophilic R groups.
 Regions exposed on the outside and inside contain amino acids with hydrophobic R groups.
 - d Within the phospholipid bilayer they contain amino acids with hydrophobic R groups. Regions exposed on the outside and inside contain amino acids with hydrophilic R groups.
- 13. The permeability of cell membranes varies with temperature. Plants containing pigment in their vacuoles are useful models for measuring the effects of temperature on cell membranes. Investigations typically show two phases, a gradual increase in the loss of pigment between 0°C and 40°C and a rapid loss of pigment above 40°C. Which is the best explanation for the changes seen between 0°C and 40°C?
 - a The cell membrane melts and intrinsic proteins denature, leaving holes for the pigment to escape.
 - b Pigment is actively transported out of the cell at a faster rate at higher temperature.
 - c Pigment molecules have more kinetic energy and there is a faster rate of diffusion out of the cell.
 - d The cell membrane denatures leaving pores for the pigment to escape.

14. Which table contains a set of correct statements about transport across the membrane?

а

b

	Direction	Details
Active transport	From high to low	Requires ATP through Channel proteins
	concentration	
Facilitated	From low to high	No ATP – Requires Carrier proteins
diffusion	concentration	
Simple diffusion	From low to high	No ATP – small non-polar molecules such
	concentration	as O_2 , CO_2 move between phospholipids
Exocytosis	Inside to outside	Requires ATP and movement of
	of the cell	cytoskeleton to move large molecules
Receptor	Outside to inside	Triggered by ligands / signal molecules /
mediated	of the cell	antigens to engulf larger molecules
endocytosis		
	Direction	Details
Active transport	From low to high	Requires ATP through Carrier proteins
	concentration	
Facilitated	From high to low	No ATP – Requires Channel proteins
diffusion	concentration	
Simple diffusion	From high to low	No ATP – small non-polar molecules such
	concentration	as O_2 , CO_2 move between phospholipids
Exocytosis	Inside to outside	Requires ATP and movement of
	of the cell	cytoskeleton to move large molecules
Receptor	Outside to inside	Triggered by ligands / signal molecules /
mediated	of the cell	antigens to engulf larger molecules
endocytosis		
	Direction	Details
Active transport	From low to high	Requires ATP through Channel proteins
	concentration	
Facilitated	From high to low	No ATP – Requires Carrier proteins
diffusion	concentration	
Simple diffusion	From high to low	No ATP – small non-polar molecules such
	concentration	as Na ⁺ & H ₂ O move between
		phospholipids
Exocytosis	Inside to outside	phospholipids Requires ATP and movement of
Exocytosis	Inside to outside of the cell	Requires ATP and movement of cytoskeleton to move large molecules
Exocytosis Receptor	Inside to outside of the cell Outside to inside	phospholipidsRequires ATP and movement of cytoskeleton to move large moleculesTriggered by ligands / signal molecules /
Exocytosis Receptor mediated	Inside to outside of the cell Outside to inside of the cell	phospholipidsRequires ATP and movement of cytoskeleton to move large moleculesTriggered by ligands / signal molecules / antigens to engulf larger molecules
Exocytosis Receptor mediated endocytosis	Inside to outside of the cell Outside to inside of the cell	Phospholipids Requires ATP and movement of cytoskeleton to move large molecules Triggered by ligands / signal molecules / antigens to engulf larger molecules
Exocytosis Receptor mediated endocytosis	Inside to outside of the cell Outside to inside of the cell Direction	phospholipidsRequires ATP and movement of cytoskeleton to move large moleculesTriggered by ligands / signal molecules / antigens to engulf larger moleculesDetails
Exocytosis Receptor mediated endocytosis Active transport	Inside to outside of the cell Outside to inside of the cell Direction From low to high	phospholipidsRequires ATP and movement of cytoskeleton to move large moleculesTriggered by ligands / signal molecules / antigens to engulf larger moleculesDetailsRequires ATP through Carrier proteins
Exocytosis Receptor mediated endocytosis Active transport	Inside to outside of the cell Outside to inside of the cell Direction From low to high concentration	phospholipidsRequires ATP and movement of cytoskeleton to move large moleculesTriggered by ligands / signal molecules / antigens to engulf larger moleculesDetailsRequires ATP through Carrier proteins
Exocytosis Receptor mediated endocytosis Active transport Facilitated	Inside to outside of the cell Outside to inside of the cell Direction From low to high concentration From high to low	phospholipidsRequires ATP and movement of cytoskeleton to move large moleculesTriggered by ligands / signal molecules / antigens to engulf larger moleculesDetailsRequires ATP through Carrier proteinsNo ATP – Requires Channel proteins
Exocytosis Receptor mediated endocytosis Active transport Facilitated diffusion	Inside to outside of the cell Outside to inside of the cell Direction From low to high concentration From high to low concentration	phospholipidsRequires ATP and movement of cytoskeleton to move large moleculesTriggered by ligands / signal molecules / antigens to engulf larger moleculesDetailsRequires ATP through Carrier proteinsNo ATP – Requires Channel proteins
Exocytosis Receptor mediated endocytosis Active transport Facilitated diffusion Simple diffusion	Inside to outside of the cell Outside to inside of the cell Direction From low to high concentration From high to low concentration From high to low	phospholipidsRequires ATP and movement of cytoskeleton to move large moleculesTriggered by ligands / signal molecules / antigens to engulf larger moleculesDetailsRequires ATP through Carrier proteinsNo ATP – Requires Channel proteinsNo ATP – small non-polar molecules such
Exocytosis Receptor mediated endocytosis Active transport Facilitated diffusion Simple diffusion	Inside to outside of the cell Outside to inside of the cell Direction From low to high concentration From high to low concentration From high to low concentration	phospholipidsRequires ATP and movement of cytoskeleton to move large moleculesTriggered by ligands / signal molecules / antigens to engulf larger moleculesDetailsRequires ATP through Carrier proteinsNo ATP – Requires Channel proteinsNo ATP – small non-polar molecules such as Na ⁺ & H ₂ O move between
Exocytosis Receptor mediated endocytosis Active transport Facilitated diffusion Simple diffusion	Inside to outside of the cell Outside to inside of the cell Direction From low to high concentration From high to low concentration From high to low concentration	phospholipidsRequires ATP and movement of cytoskeleton to move large moleculesTriggered by ligands / signal molecules / antigens to engulf larger moleculesDetailsRequires ATP through Carrier proteinsNo ATP – Requires Channel proteinsNo ATP – small non-polar molecules such as Na ⁺ & H2O move between phospholipids
Exocytosis Receptor mediated endocytosis Active transport Facilitated diffusion Simple diffusion Exocytosis	Inside to outside of the cell Outside to inside of the cell Direction From low to high concentration From high to low concentration From high to low concentration	phospholipidsRequires ATP and movement of cytoskeleton to move large moleculesTriggered by ligands / signal molecules / antigens to engulf larger moleculesDetailsRequires ATP through Carrier proteinsNo ATP – Requires Channel proteinsNo ATP – small non-polar molecules such as Na ⁺ & H2O move between phospholipidsRequires ATP and movement of
Exocytosis Receptor mediated endocytosis Active transport Facilitated diffusion Simple diffusion Exocytosis	Inside to outside of the cell Outside to inside of the cell Direction From low to high concentration From high to low concentration From high to low concentration Outside to the inside of the cell	phospholipids Requires ATP and movement of cytoskeleton to move large molecules Triggered by ligands / signal molecules / antigens to engulf larger molecules Details Requires ATP through Carrier proteins No ATP – Requires Channel proteins No ATP – small non-polar molecules such as Na ⁺ & H ₂ O move between phospholipids Requires ATP and movement of cytoskeleton to move large molecules
Exocytosis Receptor mediated endocytosis Active transport Facilitated diffusion Simple diffusion Exocytosis Receptor	Inside to outside of the cell Outside to inside of the cell Direction From low to high concentration From high to low concentration From high to low concentration Outside to the inside of the cell Inside to the	phospholipidsRequires ATP and movement of cytoskeleton to move large moleculesTriggered by ligands / signal molecules / antigens to engulf larger moleculesDetailsRequires ATP through Carrier proteinsNo ATP – Requires Channel proteinsNo ATP – small non-polar molecules such as Na ⁺ & H2O move between phospholipidsRequires ATP and movement of cytoskeleton to move large moleculesTriggered by ligands / signal molecules /
Exocytosis Receptor mediated endocytosis Active transport Facilitated diffusion Simple diffusion Exocytosis Receptor mediated	Inside to outside of the cell Outside to inside of the cell Direction From low to high concentration From high to low concentration From high to low concentration Outside to the inside of the cell Inside to the outside of the	phospholipidsRequires ATP and movement of cytoskeleton to move large moleculesTriggered by ligands / signal molecules / antigens to engulf larger moleculesDetailsRequires ATP through Carrier proteinsNo ATP – Requires Channel proteinsNo ATP – small non-polar molecules such as Na* & H2O move between phospholipidsRequires ATP and movement of cytoskeleton to move large moleculesTriggered by ligands / signal molecules / antigens to engulf larger molecules
Exocytosis Receptor mediated endocytosis Active transport Facilitated diffusion Simple diffusion Exocytosis Receptor mediated endocytosis	Inside to outside of the cell Outside to inside of the cell Direction From low to high concentration From high to low concentration From high to low concentration Outside to the inside of the cell Inside to the outside of the cell	phospholipidsRequires ATP and movement of cytoskeleton to move large moleculesTriggered by ligands / signal molecules / antigens to engulf larger moleculesDetailsRequires ATP through Carrier proteinsNo ATP – Requires Channel proteinsNo ATP – small non-polar molecules such as Na ⁺ & H ₂ O move between phospholipidsRequires ATP and movement of cytoskeleton to move large moleculesTriggered by ligands / signal molecules / antigens to engulf larger molecules

с

d

- 15. Which of the following statements about Osmosis is correct?
 - Crenation occurs when the hydrostatic pressure of the cell is less than the oncotic а pressure
 - A cell becomes turgid when the hydrostatic pressure of the cell is greater than the b osmotic pressure
 - С A cell becomes flaccid when the hydrostatic pressure of the cell is greater than the osmotic pressure
 - d A cell remains the same size when the oncotic pressure and the hydrostatic pressure act in the same direction.
- 16. What happens during the G2 Phase of the cell cycle?
 - **DNA** replication а
 - b Cell organelles (apart from chromosomes) are duplicated
 - The cell splits into two с
 - Duplicated chromosomes are checked for errors d
- Which table shows the correct details for Mitosis and Meiosis 17.

а		Mitosis	Meiosis
	Kinetochore attaches to centromere	✓	✓
	Homologous chromosomes form pairs	×	\checkmark
	Forms haploid daughter cells	×	\checkmark
	Independent assortment of	×	\checkmark
	chromosomes occurs		
b		Mitosis	Meiosis
	Kinetochore attaches to centromere	\checkmark	×
	Homologous chromosomes form pairs	×	\checkmark
	Forms haploid daughter cells	×	\checkmark
	Independent assortment of	✓	×
	chromosomes occurs		
с		Mitosis	Meiosis
	Kinetochore attaches to centromere	\checkmark	×
	Homologous chromosomes form pairs	×	\checkmark
	Forms haploid daughter cells	\checkmark	\checkmark
	Independent assortment of	×	\checkmark
	chromosomes occurs		
d			
		Mitosis	Meiosis
	Kinetochore attaches to centromere	Mitosis	Meiosis ✓
	Kinetochore attaches to centromere Homologous chromosomes form pairs	Mitosis ✓ ×	Meiosis ✓ ✓
	Kinetochore attaches to centromere Homologous chromosomes form pairs Forms haploid daughter cells	Mitosis ✓ × ✓	Meiosis
	Kinetochore attaches to centromere Homologous chromosomes form pairs Forms haploid daughter cells Independent assortment of	Mitosis ✓ × ✓ × ×	Meiosis V V V V V V V V V V V V V

d

- 18. Independent assortment generates variation. This occurs twice in the formation of gametes. In a cell with 5 chromosomes, how many different genetic combinations would be generated during meiosis?
 - 200,000 а
 - 10 b
 - 25 с
 - d 1024

- 19. What is the function of squamous epithelium?
 - a It is a connective tissue
 - b Produces mucus in the lungs
 - c It has cilia to move substances such as mucus out of the lungs
 - d Allows rapid diffusion to take place
- 20. Which statement is correct?
 - a Xylem is a vascular tissue which has sieve plates and sieve tube cells and transports water
 - b Phloem is a vascular tissue which is lignified and transports organic nutrients, particularly sucrose
 - c Stem cells in the bone marrow are referred to as multipotent as they can differentiate into a range of different blood cell types
 - d Totipotent stem cells can form all tissues in the human body, but not placental cells

PiXL Independence – Level 2 5 questions, 5 sentences, 5 words A Level Biology – Cells

INSTRUCTIONS

- For each statement, use either the suggested website or your own text book to write a 5point summary. At A-level, answers frequently require more than 1 key word for the mark, so aim to include a few key words.
- It is important to stick to 5 sentences. It is the process of selecting the most relevant information and summarizing it, that will help you remember it.
- Write concisely and do not elaborate unnecessarily, it is harder to remember and revise facts from a big long paragraph.
- Finally, identify 5 key words that you may have difficulty remembering and include a brief definition. You might like to include a clip art style picture to help you remember it.

Example	Explain how to carry out serial dilutions		
Source:	SAPS – Serial dilutions – www.tiny.cc/serialdilutions		
1. Standard form $10 \times 10 \times 10$ and then the number of $0 \times 10^{10} \times 10^{10}$ Numbers smaller than 1.0			

- Standard form use 1.0 x 10 and then the number of 0s, e.g. 1000 = 1.0 x 10⁰ Numbers smaller than 1.0, e.g. 0.01 then use a minus sign. e.g. 1.0 x 10⁻²
- (skip to section 5). To calculate a dilution Take 1cm³ of stock and add 49cm³ of water to make it up to 50cm³
- 3. Therefore, we have 1/50th of the stock solution. (final volume / volume taken)
- 4. Calculate concentration by Original concentration / dilution factor.
- 5. Serial dilutions are used when your experiment only works over a certain range. E.g. when using a colorimeter. Really concentrated samples will be too dark.

Dilution factor	Serial dilution	Mol dm ⁻¹ units for	Stock solution – the	Aliquot – a portion
The number of	The process of	measuring	original solution, the	from the whole
times a stock	making lots of	concentration (how	most concentrated	sample
solution has been	dilutions	many moles per dm	one	
diluted		(litre))		

Question 1 Explain how different types of image are produced by an electron microscope			roscope		
Source:	Website – <u>http:</u> Interactive - <u>ww</u>	//tiny.cc/sem /w.ammrf.org.au/r	nyscope/		

Question 2 Explain how organelles work together to synthesize and export proteins (detailed pr synthesis not required).		ins (detailed protein			
	Source:	Website: <u>www.tinyurl.c</u> Interactive - <u>www.johr</u>	om/kprotein hkyrk.com (select cell an	atomy)	
			1	1	
					10

Question 3	Compare the ultrastructure of prokaryotes and eukaryotes. Website: Khan academy – www.tiny.cc/khancells Interactive: www.tinyurl.com/cellint2			
Source:				

Question 4	Describe how the cell cycle is controlled and regulated.
Source:	Website www.tinyurl.com/kmitosis Interactive: McGraw hill animation – www.tiny.cc/cellcycle2 - There are two further link on the left to use - www.tiny.cc/cellcycle2 - There are two further link

Question 5	Explain how substances are transported across the cell membrane.		
Source:	Website: www.tinyurl.com/ktransport2 Interactive: www.tiny.cc/memtrans There are several animations on the left, some are more complex. Start with diffusion, facilitated diffusion, primary active transport and endo and exocytosis.		
	12		

PiXL Independence – Level 3 Biology in The News A Level Biology – Cells

Fake news

Sensationalised news stories have been around for some time, but with the mass growth of social media, the problem seems to have grown in recent years. At the very least, the US Presidential election has certainly highlighted the impact that misleading information can have. <u>www.tiny.cc/fakenews2</u>

At home, the Brexit vote also suffered from the circulation of misleading news stories <u>www.tiny.cc/fakenews3</u>

Therefore, the ability to identify real information, track it back to the source article and make your own judgement is a very important skill. This activity will help you develop that skill.

Stem cells

News article – www.tiny.cc/stemhowe NHS article – www.tinyurl.com/ydd7bmb2 Discussion article – www.tinyurl.com/stemcrit Real article – www.tinyurl.com/stemglas

Task

You need to produce a 1 page essay on the use of Stem cells to help patients who have suffered from a stroke. The table below will give you guidance on how to do it well.

Essay section	Activity
Introduction	Read through the first news article. Write a brief summary of the story. Then offer a brief evaluation on the article, how believable is it,
	having the perfect evaluation at this stage, it is more important to show by the end of the essay you have developed your evaluation skill.
Describe	Read the NHS choices article which gives an overview of the article itself and the current science. Include a description of how stem cells can be used to treat stroke and the importance of this treatment.
Explore	Many websites discuss the truth behind science news, now read the discussion article. Write a summary of some of the key points made in the Gordie Howe case that you did not consider in your opening paragraph. This will show areas you need to consider in the future.
Evaluate	Finally, read the article summary by the University of Glasgow. Can you offer any final evaluative thoughts about the trustworthiness of this article it is written by a University

PiXL Independence – Level 4 Scientific Podcast A Level Biology – Cells

Scientific Podcasts

There are several types of evidence you will be asked to produce at university. In addition to the traditional essay and scientific poster, the use of Podcasts is becoming increasingly common. It is actually harder than you think to produce a short concise, detailed and accurate podcast, therefore this task will help you get ahead of the game when you get to university.

Creating your Podcast

There are lots of pieces of software to create podcasts and edit them, however, the easiest would be the voice recorder on your phone, just check that it runs for long enough and you can save it in a suitable format, e.g. MP3, before you complete your master piece and find you need to do it again! Alternatively, get set up with Audacity which is free and will help you familiarise yourself with it.

The University of Southampton has produced some excellent guidance on creating Podcasts, which you can access at www.tiny.cc/podcasts3 Here are three of the key tips:

- 1. Write out your objective and share it at the start of the podcast.
- 2. Give it structure like you would in an essay.
- 3. Whilst it is important to plan a structure, sometimes it is harder to listen to someone who is reading than someone who is more naturally talking, therefore, try to have an outline and allow some natural speech.
- 4. Think about the recording, pick a quiet room and speak a bit louder than normal. Do a few trial runs and check the quality.

Examples

The naked scientists produce a series of podcasts (and is also a really useful website). Check out an example about a contagious cancer at <u>www.tiny.cc/taz</u>

Figure 1 Cell cultures

Who was Henrietta Lacks?

Background

In laboratories around the world, human cells grow in culture, quickly available for scientists to access. However, this was not always the case. Most human tissues will not continuously grow in culture. Cancerous cells, however, switch off the genes that normally limit exponential growth and can be grown in culture. More than 55 years ago, Henrietta Lacks had her tumor

biopsied. Unknowingly, these cells were cultured and are now still used in laboratories around the world, known as the HeLa (<u>Henrietta La</u>cks) line.

Henrietta never knew about the cells, she was a poor lady and never received any compensation for providing a cell line that biotechnology companies sell to laboratories all over the world. Nor did she give consent.

As the pace of biotechnology research increases, other situations arise. For example, what if you were the only person who had a rare version of a gene that provided resistance to a cancer or prevented Zika virus. Then what if a biotech company took a sample of your blood and spent millions making the next miracle drug from your DNA template? Who should benefit, the Biotech company who carried out the research or you that didn't even know about your gene? Could you be forced to provide blood? We are on the verge of an era where genes can be patented, but who should own the rights?

Source article

Nature news : <u>http://www.nature.com/news/deal-done-over-hela-cell-line-</u> <u>1.13511#/timeline1</u> or use <u>www.tiny.cc/hela1</u> Article 2 - <u>https://www.healthtalk.umn.edu/2014/11/11/origin-of-hela-cells-continues-to-</u> <u>impactresearch-ethics/ or www.tiny.cc/hela2</u>

Task

At university interviews, you will often be asked to discuss ethical issues in science. This is one example that you could discuss.

Read the two articles on Henrietta Lacks.

Then produce a podcast using the guidance below

Describe	Describe the story of Henrietta Lacks.
Explain	Explain why cancer cells can be cultured.
Discuss	Discuss the key ethical issues involved in human research and
	the use of genetic and cellular material.

PiXL Independence – Level 5 Video summaries A-level Biology – Cells

Cornell Notes

At A level and University, you will make large amounts of notes, but those notes are only of use if you record them in a sensible way. One system for recording notes is known as the Cornell notes system. This method encourages you to select relevant information, rather than trying to write a transcript of everything said. More importantly, it forces you to spend a few minutes reviewing what you have written, which has been scientifically proven to aid learning and memory retention.

The ideal is to write everything on one page, but some students may prefer to type and others will to handwrite their notes. Whichever option you use, remember the aim is to summarise and condense the content with a focus on the objectives that you are trying to learn and understand.

There are three main sections to the Cornell notes

- 1 **Cue/ Objectives** This can be done before or after the lecture. You may have been provided with the objectives or you may need to decide what they were or you may want to make the link to your learning if this is an additional task or lecture you are viewing, such as this video.
- 2 **Notes** In this space you record concisely, simply the things you are LESS likely remember **The NEW knowledge.**
- 3 **Summary** The most important step that is carried out after the lecture or video. This helps to reinforce learning.

Background

The following series of videos link to your learning. The first video shows in amazing detail the inner working of the cell. It will really help you appreciate the extraordinary complexity of the cell. The second video is a Ted talk which discusses the use of stem cells. The final video discusses the role of sugars on the cell membrane.

Source article

Video 1 – The secret life of the cell (BBC) BBC: www.tiny.cc/secretcell / http://www.dailymotion.com/video/x4fjy56

Video 2 – Transplant cells not organs

Ted Ed talks: https://www.ted.com/talks/susan_lim or www.tiny.cc/tedstem

Video 3 – What the sugar coating on your cells is trying to tell you Ted Ed talks

https://www.ted.com/talks/carolyn_bertozzi_what_the_sugar_coating_on_your_cells_is_tr ying_to_tell_you_or_www.tiny.cc/cellsugar

Task:

You need to produce a set of Cornell notes for each of the videos given above. Use the following objective to guide your note taking, this links to your learning.

- 1. Discuss how the organelles within the cell work together to transport substances, communicate and carry out cell functions
- 2. Evaluate the role of stem cells in the treatment of diseases such as Heart disease and blindness
- 3. Explain how modern drugs can interfere with the growth of a tumor

Summary (after the video)

What are your main points of learning from this video.

This is your chance to make sense of your notes.

Make clear connections to the things you need to know

	Title
	Date
Objectives	
Summers	l
Summary	

Commissioned by The PiXL Club Ltd.

This resource is strictly for the use of member schools for as long as they remain members of The PiXL Club. It may not be copied, sold, or transferred to a third party or used by the school after membership ceases. Until such time it may be freely used within the member school.

All opinions and contributions are those of the authors. The contents of this resource are not connected with, or endorsed by, any other company, organisation or institution.

PiXL Club Ltd endeavour to trace and contact copyright owners. If there are any inadvertent omissions or errors in the acknowledgements or usage, this is unintended and PiXL will remedy these on written notification.